14302 measured reflections

 $R_{\rm int} = 0.097$

5138 independent reflections

2342 reflections with $I > 2\sigma(I)$

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

[µ-1,2-Bis(2-hydroxybenzoyl)hydrazine(4—)]bis[tripyridinecobalt(II)] bis[trichloridopyridinecobalt(III)]

Yu-Ting Chen,^{a,b} Jian-Min Dou,^a* Da-Cheng Li,^a Da-Qi Wang^a and Yue-Hua Zhu^c

^aSchool of Chemistry and Chemical Engineering, Liaocheng University, Shandong 252059, People's Republic of China, ^bDepartment of Chemistry, Dezhou University, Dezhou 253023, People's Republic of China, and ^cSchool of Materials Science and Engineering, Liaocheng University, Liaocheng 252059, People's Republic of China Correspondence e-mail: jmdou@lcu.edu.cn

Received 6 November 2007; accepted 15 November 2007

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.013 Å; R factor = 0.064; wR factor = 0.161; data-to-parameter ratio = 14.6.

The title complex is composed of two different structural units, $[Co_2(C_{14}H_8N_2O_4)(C_5H_5N)_6] \cdot [CoCl_3(C_5H_5N)]_2$ or $A \cdot 2B$. The Aunit is centrosymmetric. Each Co^{II} atom in A exhibits a distorted octahedral Co(ONO)(N)(N)(N) coordination environment, and the Co^{II}...Co^{II} distance is 4.409 (3) Å, whereas the cobalt(III) ion in B displays a distorted tetrahedral geometry. Group A is assembled into a two-dimensional network *via* intermolecular C-H···· π interactions along the [101] direction.

Related literature

Three manganese metallacrowns with unsymmetrical aroylhydrazine ligands were synthesized and reported by Dou *et al.* (2006) and John *et al.* (2006). For the crystal structure of an iron compound with N,N'-bis-picolinoylhydrazine, see: Bernhardt *et al.* (2005). For a nickel complex of N,N'-bis-salicyloylhydrazine, see: Chen *et al.* (2007).

Experimental

Crystal data

$Co_2(C_{14}H_8N_2O_4)(C_5H_5N_6]$	$\beta = 66.078 \ (2)^{\circ}$
$[CoCl_3(C_5H_5N)]_2$	V = 2906.6 (6) Å ³
$M_r = 1349.44$	Z = 2
Monoclinic, $P2_1/n$	Mo $K\alpha$ radiation
a = 16.5112 (18) Å	$\mu = 1.45 \text{ mm}^{-1}$
b = 10.7135 (15) Å	T = 298 (2) K
c = 17.975 (2) Å	$0.43 \times 0.24 \times 0.20 \text{ mm}$

Data collection

Bruker SMART 1000 CCD area detector diffractometer
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T_{min} = 0.574, T_{max} = 0.760

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.064$	352 parameters
$wR(F^2) = 0.161$	H-atom parameters constrained
S = 1.00	$\Delta \rho_{\rm max} = 0.84 \text{ e } \text{\AA}^{-3}$
5138 reflections	$\Delta \rho_{\rm min} = -0.35 \text{ e } \text{\AA}^{-3}$

Table 1

Selected bond lengths (Å).

Co1-N1 ⁱ	1.848 (5)	Co1-N4	1.964 (5)
Co1-O2 ⁱ	1.853 (4)	Co2-N5	2.046 (7)
Co1-O1	1.914 (4)	Co2-Cl3	2.204 (2)
Co1-N3	1.945 (5)	Co2-Cl2	2.221 (2)
Co1-N2	1.960 (5)	Co2-Cl1	2.230 (2)

Symmetry code: (i) -x, -y + 1, -z.

Table 2

C-H··· π weak interaction parameters (Å, °).

Cg is the centroid of the C2-C7 ring.

 $C-H\cdots Cg$ C-H $H\cdots Cg$ $C\cdots Cg$ $C-H\cdots Cg$ $C20-H20\cdots Cg^{ii}$ 0.932.643.327 (4)132Summary reader (ii)n+1/2n+1/21/2

Symmetry code: (ii) -x + 1/2, y + 1/2, -z - 1/2.

Data collection: *SMART* (Siemens, 1996); cell refinement: *SAINT* (Siemens, 1996); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997*a*); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997*a*); molecular graphics: *SHELXTL* (Sheldrick, 1997*b*); software used to prepare material for publication: *SHELXTL*.

The authors acknowledge the support of the National Natural Science Foundation of China (No. 20671048).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: KP2146).

References

Bernhardt, P. V., Chin, P., Sharpe, P. C., Wang, J. C. & Richardson, D. R. (2005). Biol. Inorg. Chem. 10, 761–777.

- Chen, Y.-T., Dou, J.-M., Li, D.-C., Wang, D.-Q. & Zhu, Y.-H. (2007). Acta Cryst. E63, m2503–m2504.
- Dou, J. M., Liu, M. L., Li, D. C. & Wang, D. Q. (2006). Eur. J. Inorg. Chem. 23, 4866–4871.
- John, R. P., Park, J., Moon, D., Lee, K. & Lah, M. S. (2006). *Chem. Commun.* pp. 3699–3701.

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany. Sheldrick, G. M. (1997a). SHELXL97 and SHELXS97. University of Göttingen, Germany. Sheldrick, G. M. (1997b). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.

Siemens (1996). *SMART* and *SAINT*. Siemens Analytical X-Ray Instruments Inc., Madison, Wisconsin, USA.

Acta Cryst. (2007). E63, m3129-m3130 [doi:10.1107/S1600536807059442]

[#-1,2-Bis(2-hydroxybenzoyl)hydrazine(4-)]bis[tripyridinecobalt(II)] bis[trichloridopyridinecobalt(III)]

Y.-T. Chen, J.-M. Dou, D.-C. Li, D.-Q. Wang and Y.-H. Zhu

Comment

A large number of aroylhydrazine complexes have been prepared and studied due to their diverse molecular architectures and quite interesting chemical properties (Dou *et al.*, 2006; John *et al.*, 2006). However, only a few of the compounds with symmetrical diaroylhydrazine ligands have so far been reported (Bernhardt *et al.*, 2005; Chen *et al.*, 2007). Herein, we have synthesized and solve the crystal structure of a new cobalt complex with N, N'-bis-salicyloylhydrazine (I).

The title complex consists of two structural units: $[Co_2(C_{14}H_8N_2O_4)(C_5H_5N)_6](A)$ and $[CoCl_3(C_5H_5N)](B)$. The unit (A) exhibits crystallographic inversion symmetry and is composed of a tetranionic hexadentate ligand bridging two cobalt(II) ions and six pyridine molecules. The distance $Co^{II} \cdots Co^{II}$ is 4.409 Å. As shown in Table 1, each cobalt(II) ion in the unit (A) is in a slightly distorted octahedral coordination constructed by three pyridine N, along with a phenolate O, a carbonyl O and a hydrazine N of the ligand which form the fused five-membered and six-membered rings with the cobale(II) ion. These two unique chelate rings are near to coplanar with a dihedral angle of $3(4)^\circ$. The unit (B) contains a cobalt(III) ion, three chloride ions and the N-coordinated pyridine molecule (Fig. 1, Table 1). The units (A) are linked into two-dimensional network by intermolecular C—H··· π interactions between two aromatic rings [C20—H20··· Cg^{ii} with H··· Cg^{ii} of 2.636Å and C—H···Cg angle of 131.59°, Cg is a centroid of C2→C7 with symmetry code: (ii) 0.5 - x, 1/2 + y, -0.5 - z] along the direction [101] (Fig. 2).

Experimental

The solution of CoCl₂. 4H₂O (0.04 g, 0.2 mmol) in methanol (10 ml) was added to the mixture of N, N[']-disalicyloylhydrazine (0.027 g, 0.1 mmol) and sodium hydroxide (0.016 g, 0.4 mmol) in pyridine (10 ml). A black-green solution was obtained after refluxing for 1 h. After filtrated, dimethyl ether was slowly diffused into the filtrate. Black-green block crystals suitable for X-ray diffraction were obtained after five days. Yield: 0.0387 g, 57.38%. m. p.> 573 K. Anal. for C₅₄H₄₈Cl₆Co₄N₁₀O₄: Calc. C, 48.02; H, 3.56; N, 10.374; Found: C, 48.21; H, 3.49; N, 10.58%.

Refinement

The H atoms on the ligands were allowed to ride on their parent atoms with $C(sp_2 \text{ hybrid})$ -H distances of 0.93Å ($U_{iso}(H)=1.2U_{eq}(C)$) and C(Pyridine)-H distance of 0.93Å ($U_{iso}(H)=1.2U_{eq}(C)$).

Figures

Fig. 1. The molecular structure of the title complex. Displacement ellipsoids are drawn at the 30% probability level and H atoms have been omitted for clarity. symmetry code (i): -x, 1 - y, -z.

Fig. 2. Two-dimensional network of the complex unit (A) generated by C—H $\cdots\pi$ interactions between aromatic rings [symm (ii): 0.5 - x, 1/2 + y, -0.5 - z].

[µ-1,2-Bis(2-hydroxybenzoyl)hydrazine(4-)]bis[tripyridinecobalt(II)] bis[trichloridopyridinecobalt(III)]

Crystal data	
$[Co_2(C_{14}H_8N_2O_4)(C_5H_5N)_6] \cdot [CoCl_3(C_5H_5N)]_2$	$F_{000} = 1368$
$M_r = 1349.44$	$D_{\rm x} = 1.542 \ {\rm Mg \ m}^{-3}$
Monoclinic, $P2(1)/n$	Mo K α radiation $\lambda = 0.71073$ Å
Hall symbol: -P 2yn	Cell parameters from 2199 reflections
a = 16.5112 (18) Å	$\theta = 2.3 - 21.3^{\circ}$
<i>b</i> = 10.7135 (15) Å	$\mu = 1.45 \text{ mm}^{-1}$
c = 17.975 (2) Å	T = 298 (2) K
$\beta = 66.078 \ (2)^{\circ}$	Block, black-green
$V = 2906.6 (6) \text{ Å}^3$	$0.43 \times 0.24 \times 0.20 \text{ mm}$
<i>Z</i> = 2	

Data collection

Bruker SMART 1000 CCD area detector diffractometer	5138 independent reflections
Radiation source: fine-focus sealed tube	2342 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.097$
T = 298(2) K	$\theta_{\text{max}} = 25.0^{\circ}$
ϕ and ω scans	$\theta_{\min} = 1.4^{\circ}$
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)	$h = -19 \rightarrow 19$
$T_{\min} = 0.574, T_{\max} = 0.760$	$k = -7 \rightarrow 12$
14302 measured reflections	$l = -21 \rightarrow 21$

Refinement

Refinement on F^2

Secondary atom site location: difference Fourier map

Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.064$	H-atom parameters constrained
$wR(F^2) = 0.161$	$w = 1/[\sigma^2(F_o^2) + (0.060P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$
S = 1.00	$(\Delta/\sigma)_{\rm max} = 0.001$
5138 reflections	$\Delta \rho_{max} = 0.84 \text{ e } \text{\AA}^{-3}$
352 parameters	$\Delta \rho_{\rm min} = -0.35 \ e \ {\rm \AA}^{-3}$
Primary atom site location: structure-invariant direct methods	Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
Co1	0.07028 (5)	0.35002 (9)	0.03356 (5)	0.0496 (3)
Co2	0.47639 (6)	0.40056 (11)	0.18083 (6)	0.0736 (4)
C11	0.42810 (14)	0.3642 (3)	0.31408 (13)	0.1100 (9)
Cl2	0.48920 (14)	0.2301 (2)	0.10663 (14)	0.0947 (7)
C13	0.59998 (13)	0.5098 (2)	0.12956 (17)	0.1122 (9)
N1	0.0141 (3)	0.5589 (4)	-0.0139 (3)	0.0479 (14)
N2	0.0166 (3)	0.3879 (5)	0.1503 (3)	0.0469 (13)
N3	0.1655 (3)	0.2636 (6)	0.0496 (3)	0.0527 (14)
N4	0.1304 (3)	0.3071 (5)	-0.0823 (3)	0.0491 (14)
N5	0.3818 (5)	0.5125 (8)	0.1692 (5)	0.091 (2)
01	0.1324 (2)	0.5058 (4)	0.0098 (2)	0.0517 (11)
02	-0.0026 (3)	0.7940 (4)	-0.0541 (2)	0.0566 (12)
C1	0.0910 (4)	0.5862 (7)	-0.0139 (3)	0.0486 (17)
C2	0.1269 (4)	0.7078 (7)	-0.0411 (3)	0.0497 (17)
C3	0.0803 (4)	0.7996 (7)	-0.0610 (4)	0.0511 (17)
C4	0.1220 (5)	0.9097 (8)	-0.0894 (4)	0.073 (2)
H4	0.0914	0.9722	-0.1032	0.088*
C5	0.2074 (6)	0.9329 (9)	-0.0988 (5)	0.087 (3)
Н5	0.2338	1.0093	-0.1192	0.105*
C6	0.2537 (5)	0.8424 (9)	-0.0779 (5)	0.078 (2)
Н6	0.3114	0.8573	-0.0836	0.093*
C7	0.2144 (4)	0.7325 (7)	-0.0490 (4)	0.0590 (19)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

H7	0.2450	0.6716	-0.0340	0.071*
C8	0.0009 (5)	0.2965 (7)	0.2040 (4)	0.066 (2)
H8	0.0118	0.2146	0.1855	0.079*
C9	-0.0313 (5)	0.3193 (8)	0.2868 (5)	0.080 (2)
Н9	-0.0434	0.2544	0.3242	0.096*
C10	-0.0442 (6)	0.4391 (9)	0.3111 (5)	0.087 (3)
H10	-0.0629	0.4579	0.3661	0.105*
C11	-0.0307 (5)	0.5311 (8)	0.2577 (5)	0.081 (2)
H11	-0.0432	0.6133	0.2752	0.097*
C12	0.0020 (5)	0.5029 (8)	0.1765 (4)	0.065 (2)
H12	0.0141	0.5675	0.1390	0.078*
C13	0.1702 (5)	0.1428 (8)	0.0509 (4)	0.068 (2)
H13	0.1250	0.0965	0.0461	0.081*
C14	0.2385 (6)	0.0802 (8)	0.0591 (5)	0.086 (3)
H14	0.2387	-0.0065	0.0614	0.103*
C15	0.3047 (5)	0.1465 (10)	0.0636 (5)	0.085 (2)
H15	0.3529	0.1071	0.0678	0.101*
C16	0.3002 (5)	0.2702 (9)	0.0621 (5)	0.087 (3)
H16	0.3456	0.3181	0.0653	0.105*
C17	0.2305 (5)	0.3268 (8)	0.0558 (5)	0.081 (2)
H17	0.2284	0.4136	0.0559	0.097*
C18	0.2134 (4)	0.3438 (7)	-0.1238 (4)	0.0623 (19)
H18	0.2396	0.3953	-0.0983	0.075*
C19	0.2608 (5)	0.3095 (8)	-0.2012 (5)	0.079 (3)
H19	0.3180	0.3399	-0.2292	0.095*
C20	0.2249 (5)	0.2304 (8)	-0.2381 (4)	0.082 (3)
H20	0.2578	0.2018	-0.2907	0.098*
C21	0.1410 (5)	0.1944 (7)	-0.1973 (4)	0.068 (2)
H21	0.1142	0.1427	-0.2223	0.081*
C22	0.0941 (4)	0.2332 (7)	-0.1187 (4)	0.0569 (19)
H22	0.0359	0.2068	-0.0907	0.068*
C23	0.2998 (7)	0.5075 (10)	0.2214 (6)	0.109 (3)
H23	0.2847	0.4539	0.2656	0.131*
C24	0.2333 (7)	0.5803 (11)	0.2132 (7)	0.119 (3)
H24	0.1753	0.5795	0.2521	0.143*
C25	0.2579 (7)	0.6506 (11)	0.1467 (7)	0.114 (3)
H25	0.2162	0.7026	0.1401	0.137*
C26	0.3383 (7)	0.6492 (10)	0.0904 (6)	0.114 (3)
H26	0.3529	0.6934	0.0421	0.137*
C27	0.4001 (6)	0.5813 (10)	0.1043 (6)	0.103 (3)
H27	0.4583	0.5839	0.0658	0.123*

Atomic displacement parameters (\AA^2)

	U^{11}	U ²²	U ³³	U^{12}	U^{13}	U^{23}
Col	0.0418 (5)	0.0598 (6)	0.0440 (5)	-0.0056 (5)	-0.0140 (4)	0.0011 (5)
Co2	0.0518 (6)	0.0880 (9)	0.0837 (8)	0.0001 (6)	-0.0303 (6)	-0.0002 (6)
Cl1	0.0748 (14)	0.168 (3)	0.0835 (15)	0.0201 (15)	-0.0286 (12)	0.0046 (16)

Cl2	0.0994 (15)	0.0885 (17)	0.1204 (18)	0.0034 (13)	-0.0694 (14)	-0.0052 (14)
C13	0.0617 (13)	0.0981 (19)	0.160 (2)	-0.0146 (12)	-0.0280 (14)	-0.0084 (17)
N1	0.046 (3)	0.053 (4)	0.040 (3)	-0.007 (3)	-0.011 (3)	0.002 (3)
N2	0.045 (3)	0.045 (4)	0.048 (3)	-0.009 (3)	-0.016 (3)	0.003 (3)
N3	0.050 (3)	0.063 (4)	0.051 (3)	-0.007 (3)	-0.026 (3)	0.001 (3)
N4	0.037 (3)	0.058 (4)	0.050 (3)	0.000 (3)	-0.016 (3)	-0.001 (3)
N5	0.071 (5)	0.119 (7)	0.087 (5)	0.016 (4)	-0.037 (4)	-0.002 (5)
01	0.042 (2)	0.061 (3)	0.051 (3)	-0.006 (2)	-0.018 (2)	0.006 (2)
O2	0.054 (3)	0.060 (3)	0.054 (3)	-0.009 (2)	-0.021 (2)	0.002 (2)
C1	0.038 (4)	0.067 (5)	0.035 (4)	-0.011 (4)	-0.009 (3)	0.006 (4)
C2	0.040 (4)	0.069 (5)	0.036 (4)	-0.001 (4)	-0.011 (3)	-0.003 (4)
C3	0.049 (4)	0.056 (5)	0.040 (4)	-0.020 (4)	-0.010 (3)	0.003 (4)
C4	0.067 (5)	0.067 (6)	0.080 (6)	0.003 (5)	-0.023 (4)	0.000 (5)
C5	0.077 (6)	0.079 (7)	0.102 (7)	-0.022 (5)	-0.033 (5)	0.014 (5)
C6	0.064 (5)	0.085 (6)	0.080 (6)	-0.018 (5)	-0.025 (4)	0.005 (5)
C7	0.055 (4)	0.070 (6)	0.049 (4)	0.004 (4)	-0.017 (4)	0.006 (4)
C8	0.080 (5)	0.054 (5)	0.058 (5)	-0.015 (4)	-0.022 (4)	0.003 (4)
C9	0.097 (6)	0.080 (7)	0.049 (5)	-0.015 (5)	-0.015 (4)	0.012 (5)
C10	0.108 (7)	0.090 (7)	0.052 (5)	0.013 (6)	-0.020 (5)	-0.001 (6)
C11	0.113 (7)	0.070 (6)	0.050 (5)	0.002 (5)	-0.023 (5)	-0.006 (5)
C12	0.073 (5)	0.065 (6)	0.047 (5)	-0.003 (4)	-0.015 (4)	0.002 (4)
C13	0.064 (5)	0.064 (6)	0.083 (5)	-0.012 (5)	-0.039 (4)	0.001 (5)
C14	0.096 (6)	0.059 (6)	0.124 (7)	-0.007 (5)	-0.068 (6)	0.011 (5)
C15	0.070 (5)	0.097 (7)	0.102 (6)	-0.003 (6)	-0.051 (5)	0.018 (6)
C16	0.086 (6)	0.071 (7)	0.139 (8)	-0.014 (5)	-0.081 (6)	0.015 (6)
C17	0.082 (6)	0.081 (6)	0.104 (6)	-0.008 (5)	-0.063 (5)	0.009 (5)
C18	0.043 (4)	0.084 (6)	0.056 (5)	-0.002 (4)	-0.015 (4)	-0.006 (4)
C19	0.046 (4)	0.128 (8)	0.051 (5)	-0.003 (5)	-0.007 (4)	-0.001 (5)
C20	0.066 (6)	0.125 (8)	0.040 (4)	0.015 (5)	-0.006 (4)	-0.013 (5)
C21	0.067 (5)	0.087 (6)	0.049 (5)	0.005 (4)	-0.024 (4)	-0.005 (4)
C22	0.047 (4)	0.077 (6)	0.044 (4)	-0.001 (4)	-0.016 (3)	0.004 (4)
C23	0.084 (7)	0.143 (10)	0.097 (7)	0.028 (7)	-0.033 (6)	0.003 (7)
C24	0.091 (7)	0.153 (10)	0.104 (8)	0.029 (7)	-0.030 (6)	-0.002 (8)
C25	0.095 (8)	0.138 (10)	0.108 (8)	0.036 (7)	-0.040 (7)	0.001 (8)
C26	0.095 (7)	0.142 (10)	0.104 (8)	0.021 (7)	-0.038 (7)	0.006 (7)
C27	0.082 (7)	0.126 (9)	0.102 (8)	0.020 (6)	-0.039 (6)	0.002 (7)

Geometric parameters (Å, °)

Co1—N1 ⁱ	1.848 (5)	С8—Н8	0.9300
Co1—O2 ⁱ	1.853 (4)	C9—C10	1.345 (10)
Co1—O1	1.914 (4)	С9—Н9	0.9300
Co1—N3	1.945 (5)	C10-C11	1.331 (10)
Co1—N2	1.960 (5)	C10—H10	0.9300
Co1—N4	1.964 (5)	C11—C12	1.368 (9)
Co2—N5	2.046 (7)	C11—H11	0.9300
Co2—Cl3	2.204 (2)	C12—H12	0.9300
Co2—Cl2	2.221 (2)	C13—C14	1.370 (9)
Co2—Cl1	2.230 (2)	С13—Н13	0.9300

N1—C1	1.303 (7)	C14—C15	1.334 (10)
N1—N1 ⁱ	1.368 (9)	C14—H14	0.9300
N1—Co1 ⁱ	1.848 (5)	C15—C16	1.328 (10)
N2—C12	1.306 (8)	С15—Н15	0.9300
N2—C8	1.325 (8)	C16—C17	1.345 (10)
N3—C13	1.297 (8)	С16—Н16	0.9300
N3—C17	1.311 (8)	С17—Н17	0.9300
N4—C22	1.315 (7)	C18—C19	1.342 (9)
N4—C18	1.327 (7)	C18—H18	0.9300
N5—C23	1.297 (10)	C19—C20	1.354 (10)
N5—C27	1.308 (10)	С19—Н19	0.9300
O1—C1	1.276 (7)	C20—C21	1.335 (9)
O2—C3	1.323 (7)	C20—H20	0.9300
O2—Co1 ⁱ	1.853 (4)	C21—C22	1.372 (8)
C1—C2	1.433 (9)	C21—H21	0.9300
C2—C3	1.382 (9)	С22—Н22	0.9300
C2—C7	1.417 (8)	C23—C24	1.402 (12)
C3—C4	1.358 (9)	С23—Н23	0.9300
C4—C5	1.373 (9)	C24—C25	1.329 (13)
C4—H4	0.9300	C24—H24	0.9300
C5—C6	1.379 (10)	C25—C26	1.303 (12)
С5—Н5	0.9300	С25—Н25	0.9300
C6—C7	1.343 (9)	C26—C27	1.356 (12)
С6—Н6	0.9300	C26—H26	0.9300
С7—Н7	0.9300	С27—Н27	0.9300
C8—C9	1.385 (9)		
N1 ⁱ —Co1—O2 ⁱ	92.1 (2)	N2—C8—H8	119.0
N1 ⁱ —Co1—O1	82.78 (19)	С9—С8—Н8	119.0
O2 ⁱ —Co1—O1	174.87 (19)	С10—С9—С8	117.3 (8)
N1 ⁱ —Co1—N3	175.7 (2)	С10—С9—Н9	121.4
O2 ⁱ —Co1—N3	91.9 (2)	С8—С9—Н9	121.4
O1—Co1—N3	93.2 (2)	C11—C10—C9	121.0 (8)
N1 ⁱ —Co1—N2	92.7 (2)	C11—C10—H10	119.5
O2 ⁱ —Co1—N2	89.1 (2)	С9—С10—Н10	119.5
O1—Co1—N2	91.5 (2)	C10-C11-C12	119.0 (8)
N3—Co1—N2	88.9 (2)	C10-C11-H11	120.5
N1 ⁱ —Co1—N4	91.0 (2)	C12—C11—H11	120.5
O2 ⁱ —Co1—N4	91.2 (2)	N2—C12—C11	121.9 (7)
O1—Co1—N4	88.5 (2)	N2—C12—H12	119.1
N3—Co1—N4	87.4 (2)	C11—C12—H12	119.1
N2—Co1—N4	176.3 (2)	N3—C13—C14	123.3 (7)
N5—Co2—Cl3	105.2 (3)	N3—C13—H13	118.4
N5—Co2—Cl2	108.1 (2)	C14—C13—H13	118.4
Cl3—Co2—Cl2	109.83 (10)	C15—C14—C13	118.4 (8)
N5—Co2—Cl1	104.9 (2)	C15—C14—H14	120.8
Cl3—Co2—Cl1	114.14 (10)	C13—C14—H14	120.8

Cl2—Co2—Cl1	114.01 (11)	C16—C15—C14	118.4 (8)
C1—N1—N1 ⁱ	113.2 (6)	C16—C15—H15 120.8	
C1—N1—Co1 ⁱ	133.7 (5)	C14—C15—H15	120.8
N1 ⁱ —N1—Co1 ⁱ	112.7 (5)	C15-C16-C17	120.6 (8)
C12—N2—C8	118.7 (6)	C15—C16—H16	119.7
C12—N2—Co1	121.3 (5)	С17—С16—Н16	119.7
C8—N2—Co1	119.8 (5)	N3—C17—C16	122.1 (8)
C13—N3—C17	117.2 (6)	N3—C17—H17	119.0
C13—N3—Co1	122.4 (5)	С16—С17—Н17	119.0
C17—N3—Co1	120.4 (6)	N4	122.5 (7)
C22—N4—C18	118.3 (6)	N4—C18—H18	118.7
C22—N4—Co1	122.2 (4)	C19—C18—H18	118.7
C18—N4—Co1	119.3 (5)	C18—C19—C20	119.5 (7)
C23—N5—C27	117.6 (8)	C18—C19—H19	120.3
C23—N5—Co2	121.2 (7)	С20—С19—Н19	120.3
C27—N5—Co2	120.8 (7)	C21—C20—C19	118.3 (7)
C1—O1—Co1	110.6 (4)	С21—С20—Н20	120.8
C3—O2—Co1 ⁱ	125.0 (4)	C19—C20—H20	120.8
01—C1—N1	120.2 (6)	C20—C21—C22	120.3 (7)
O1—C1—C2	121.6 (6)	C20-C21-H21	119.8
N1—C1—C2	118.2 (6)	C22—C21—H21	119.8
C3—C2—C7	119.6 (7)	N4—C22—C21	121.0 (6)
C3—C2—C1	122.5 (6)	N4—C22—H22	119.5
C7—C2—C1	117.9 (6)	C21—C22—H22	119.5
O2—C3—C4	115.0 (7)	N5-C23-C24	122.2 (10)
O2—C3—C2	127.3 (6)	N5—C23—H23	118.9
C4—C3—C2	117.7 (6)	С24—С23—Н23	118.9
C3—C4—C5	122.9 (8)	C25—C24—C23	116.3 (10)
С3—С4—Н4	118.6	C25—C24—H24	121.9
C5—C4—H4	118.6	C23—C24—H24	121.9
C4—C5—C6	119.6 (8)	C26—C25—C24	122.4 (10)
С4—С5—Н5	120.2	C26—C25—H25	118.8
С6—С5—Н5	120.2	С24—С25—Н25	118.8
C7—C6—C5	119.2 (7)	C25—C26—C27	117.9 (10)
С7—С6—Н6	120.4	С25—С26—Н26	121.0
С5—С6—Н6	120.4	C27—C26—H26	121.0
C6—C7—C2	121.0 (7)	N5—C27—C26	123.2 (9)
С6—С7—Н7	119.5	N5—C27—H27	118.4
С2—С7—Н7	119.5	С26—С27—Н27	118.4
N2—C8—C9	122.0 (7)		

Symmetry codes: (i) -x, -y+1, -z.

Table 2

C-H··· π weak interaction parameters (Å, °)

Calls the controld of the C2 C7 ring	
Cg is the centrold of the $C2-C/$ fling.	

С-Н… <i>С</i> g	С-Н	H…Cg	C···Cg	С-Н…Сд
C20-H20····Cg ⁱⁱ	0.93	2.64	3.327 (4)	132

Symmetry code: (ii) -x + 1/2, y + 1/2, -z - 1/2.

Fig. 1

